direct product, metabelian, supersoluble, monomial
Aliases: C3×C32⋊C6, He3⋊4C6, C33⋊2C6, C33⋊3S3, C3⋊S3⋊C32, C32⋊(C3×C6), (C3×He3)⋊1C2, C32⋊1(C3×S3), C3.2(S3×C32), (C3×C3⋊S3)⋊C3, SmallGroup(162,34)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — C3×C32⋊C6 |
Generators and relations for C3×C32⋊C6
G = < a,b,c,d | a3=b3=c3=d6=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c-1, dcd-1=c-1 >
Subgroups: 200 in 58 conjugacy classes, 20 normal (11 characteristic)
C1, C2, C3, C3, S3, C6, C32, C32, C32, C3×S3, C3⋊S3, C3×C6, He3, He3, C33, C33, C32⋊C6, S3×C32, C3×C3⋊S3, C3×He3, C3×C32⋊C6
Quotients: C1, C2, C3, S3, C6, C32, C3×S3, C3×C6, C32⋊C6, S3×C32, C3×C32⋊C6
Character table of C3×C32⋊C6
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 3N | 3O | 3P | 3Q | 3R | 3S | 3T | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | |
size | 1 | 9 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | linear of order 3 |
ρ4 | 1 | -1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | ζ6 | -1 | ζ6 | -1 | ζ65 | linear of order 6 |
ρ5 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | -1 | -1 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | linear of order 6 |
ρ6 | 1 | -1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | ζ65 | ζ6 | ζ6 | -1 | ζ65 | ζ65 | ζ6 | -1 | linear of order 6 |
ρ7 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | linear of order 3 |
ρ8 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | linear of order 3 |
ρ9 | 1 | -1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | ζ6 | ζ65 | ζ65 | -1 | ζ6 | ζ6 | ζ65 | -1 | linear of order 6 |
ρ10 | 1 | -1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | -1 | ζ65 | ζ6 | -1 | ζ65 | ζ6 | linear of order 6 |
ρ11 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | linear of order 3 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ14 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | linear of order 3 |
ρ15 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | -1 | -1 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | linear of order 6 |
ρ16 | 1 | -1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | ζ65 | -1 | ζ65 | -1 | ζ6 | linear of order 6 |
ρ17 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | linear of order 3 |
ρ18 | 1 | -1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | -1 | ζ6 | ζ65 | -1 | ζ6 | ζ65 | linear of order 6 |
ρ19 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ20 | 2 | 0 | -1-√-3 | -1+√-3 | -1-√-3 | -1+√-3 | 2 | 2 | -1+√-3 | 2 | -1-√-3 | -1+√-3 | -1-√-3 | ζ65 | ζ65 | -1 | -1 | -1 | ζ6 | ζ6 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ21 | 2 | 0 | -1-√-3 | -1+√-3 | -1-√-3 | -1+√-3 | 2 | -1-√-3 | -1-√-3 | -1+√-3 | -1+√-3 | 2 | 2 | ζ65 | ζ6 | -1 | ζ6 | ζ65 | ζ65 | ζ6 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ22 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1+√-3 | -1-√-3 | -1-√-3 | -1+√-3 | -1+√-3 | -1-√-3 | -1 | ζ6 | -1 | ζ65 | ζ6 | ζ65 | -1 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ23 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1-√-3 | -1+√-3 | -1+√-3 | -1-√-3 | -1-√-3 | -1+√-3 | -1 | ζ65 | -1 | ζ6 | ζ65 | ζ6 | -1 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ24 | 2 | 0 | -1+√-3 | -1-√-3 | -1+√-3 | -1-√-3 | 2 | -1+√-3 | -1+√-3 | -1-√-3 | -1-√-3 | 2 | 2 | ζ6 | ζ65 | -1 | ζ65 | ζ6 | ζ6 | ζ65 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ25 | 2 | 0 | -1+√-3 | -1-√-3 | -1+√-3 | -1-√-3 | 2 | -1-√-3 | 2 | -1+√-3 | 2 | -1+√-3 | -1-√-3 | ζ6 | -1 | -1 | ζ6 | ζ65 | -1 | ζ65 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ26 | 2 | 0 | -1+√-3 | -1-√-3 | -1+√-3 | -1-√-3 | 2 | 2 | -1-√-3 | 2 | -1+√-3 | -1-√-3 | -1+√-3 | ζ6 | ζ6 | -1 | -1 | -1 | ζ65 | ζ65 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ27 | 2 | 0 | -1-√-3 | -1+√-3 | -1-√-3 | -1+√-3 | 2 | -1+√-3 | 2 | -1-√-3 | 2 | -1-√-3 | -1+√-3 | ζ65 | -1 | -1 | ζ65 | ζ6 | -1 | ζ6 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ28 | 6 | 0 | 6 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ29 | 6 | 0 | -3+3√-3 | -3-3√-3 | 3-3√-3/2 | 3+3√-3/2 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 6 | 0 | -3-3√-3 | -3+3√-3 | 3+3√-3/2 | 3-3√-3/2 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 8 17)(2 9 18)(3 10 13)(4 11 14)(5 12 15)(6 7 16)
(1 8 17)(3 13 10)(4 14 11)(6 7 16)
(1 17 8)(2 9 18)(3 13 10)(4 11 14)(5 15 12)(6 7 16)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
G:=sub<Sym(18)| (1,8,17)(2,9,18)(3,10,13)(4,11,14)(5,12,15)(6,7,16), (1,8,17)(3,13,10)(4,14,11)(6,7,16), (1,17,8)(2,9,18)(3,13,10)(4,11,14)(5,15,12)(6,7,16), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)>;
G:=Group( (1,8,17)(2,9,18)(3,10,13)(4,11,14)(5,12,15)(6,7,16), (1,8,17)(3,13,10)(4,14,11)(6,7,16), (1,17,8)(2,9,18)(3,13,10)(4,11,14)(5,15,12)(6,7,16), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18) );
G=PermutationGroup([[(1,8,17),(2,9,18),(3,10,13),(4,11,14),(5,12,15),(6,7,16)], [(1,8,17),(3,13,10),(4,14,11),(6,7,16)], [(1,17,8),(2,9,18),(3,13,10),(4,11,14),(5,15,12),(6,7,16)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)]])
G:=TransitiveGroup(18,76);
(1 5 4)(2 6 3)(7 11 9)(8 12 10)(13 15 17)(14 16 18)
(1 11 15)(2 18 8)(3 16 10)(4 7 13)(5 9 17)(6 14 12)
(1 4 5)(2 6 3)(7 9 11)(8 12 10)(13 17 15)(14 16 18)
(1 2)(3 4)(5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
G:=sub<Sym(18)| (1,5,4)(2,6,3)(7,11,9)(8,12,10)(13,15,17)(14,16,18), (1,11,15)(2,18,8)(3,16,10)(4,7,13)(5,9,17)(6,14,12), (1,4,5)(2,6,3)(7,9,11)(8,12,10)(13,17,15)(14,16,18), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)>;
G:=Group( (1,5,4)(2,6,3)(7,11,9)(8,12,10)(13,15,17)(14,16,18), (1,11,15)(2,18,8)(3,16,10)(4,7,13)(5,9,17)(6,14,12), (1,4,5)(2,6,3)(7,9,11)(8,12,10)(13,17,15)(14,16,18), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18) );
G=PermutationGroup([[(1,5,4),(2,6,3),(7,11,9),(8,12,10),(13,15,17),(14,16,18)], [(1,11,15),(2,18,8),(3,16,10),(4,7,13),(5,9,17),(6,14,12)], [(1,4,5),(2,6,3),(7,9,11),(8,12,10),(13,17,15),(14,16,18)], [(1,2),(3,4),(5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)]])
G:=TransitiveGroup(18,78);
(1 14 7)(2 15 8)(3 16 9)(4 17 10)(5 18 11)(6 13 12)
(1 11 3)(2 17 13)(4 6 8)(5 16 14)(7 18 9)(10 12 15)
(1 7 14)(2 15 8)(3 9 16)(4 17 10)(5 11 18)(6 13 12)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
G:=sub<Sym(18)| (1,14,7)(2,15,8)(3,16,9)(4,17,10)(5,18,11)(6,13,12), (1,11,3)(2,17,13)(4,6,8)(5,16,14)(7,18,9)(10,12,15), (1,7,14)(2,15,8)(3,9,16)(4,17,10)(5,11,18)(6,13,12), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)>;
G:=Group( (1,14,7)(2,15,8)(3,16,9)(4,17,10)(5,18,11)(6,13,12), (1,11,3)(2,17,13)(4,6,8)(5,16,14)(7,18,9)(10,12,15), (1,7,14)(2,15,8)(3,9,16)(4,17,10)(5,11,18)(6,13,12), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18) );
G=PermutationGroup([[(1,14,7),(2,15,8),(3,16,9),(4,17,10),(5,18,11),(6,13,12)], [(1,11,3),(2,17,13),(4,6,8),(5,16,14),(7,18,9),(10,12,15)], [(1,7,14),(2,15,8),(3,9,16),(4,17,10),(5,11,18),(6,13,12)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)]])
G:=TransitiveGroup(18,81);
(1 4 9)(2 5 7)(3 6 8)(10 22 21)(11 23 16)(12 24 17)(13 25 18)(14 26 19)(15 27 20)
(1 27 24)(2 22 25)(4 20 17)(5 21 18)(7 10 13)(9 15 12)
(1 27 24)(2 25 22)(3 23 26)(4 20 17)(5 18 21)(6 16 19)(7 13 10)(8 11 14)(9 15 12)
(1 2 3)(4 5 6)(7 8 9)(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)
G:=sub<Sym(27)| (1,4,9)(2,5,7)(3,6,8)(10,22,21)(11,23,16)(12,24,17)(13,25,18)(14,26,19)(15,27,20), (1,27,24)(2,22,25)(4,20,17)(5,21,18)(7,10,13)(9,15,12), (1,27,24)(2,25,22)(3,23,26)(4,20,17)(5,18,21)(6,16,19)(7,13,10)(8,11,14)(9,15,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27)>;
G:=Group( (1,4,9)(2,5,7)(3,6,8)(10,22,21)(11,23,16)(12,24,17)(13,25,18)(14,26,19)(15,27,20), (1,27,24)(2,22,25)(4,20,17)(5,21,18)(7,10,13)(9,15,12), (1,27,24)(2,25,22)(3,23,26)(4,20,17)(5,18,21)(6,16,19)(7,13,10)(8,11,14)(9,15,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27) );
G=PermutationGroup([[(1,4,9),(2,5,7),(3,6,8),(10,22,21),(11,23,16),(12,24,17),(13,25,18),(14,26,19),(15,27,20)], [(1,27,24),(2,22,25),(4,20,17),(5,21,18),(7,10,13),(9,15,12)], [(1,27,24),(2,25,22),(3,23,26),(4,20,17),(5,18,21),(6,16,19),(7,13,10),(8,11,14),(9,15,12)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)]])
G:=TransitiveGroup(27,48);
(1 3 2)(4 15 26)(5 10 27)(6 11 22)(7 12 23)(8 13 24)(9 14 25)(16 18 20)(17 19 21)
(1 13 10)(2 8 5)(3 24 27)(4 25 18)(6 12 17)(7 21 22)(9 20 15)(11 23 19)(14 16 26)
(1 18 21)(2 16 19)(3 20 17)(4 22 13)(5 14 23)(6 24 15)(7 10 25)(8 26 11)(9 12 27)
(1 2 3)(4 5 6 7 8 9)(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)
G:=sub<Sym(27)| (1,3,2)(4,15,26)(5,10,27)(6,11,22)(7,12,23)(8,13,24)(9,14,25)(16,18,20)(17,19,21), (1,13,10)(2,8,5)(3,24,27)(4,25,18)(6,12,17)(7,21,22)(9,20,15)(11,23,19)(14,16,26), (1,18,21)(2,16,19)(3,20,17)(4,22,13)(5,14,23)(6,24,15)(7,10,25)(8,26,11)(9,12,27), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27)>;
G:=Group( (1,3,2)(4,15,26)(5,10,27)(6,11,22)(7,12,23)(8,13,24)(9,14,25)(16,18,20)(17,19,21), (1,13,10)(2,8,5)(3,24,27)(4,25,18)(6,12,17)(7,21,22)(9,20,15)(11,23,19)(14,16,26), (1,18,21)(2,16,19)(3,20,17)(4,22,13)(5,14,23)(6,24,15)(7,10,25)(8,26,11)(9,12,27), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27) );
G=PermutationGroup([[(1,3,2),(4,15,26),(5,10,27),(6,11,22),(7,12,23),(8,13,24),(9,14,25),(16,18,20),(17,19,21)], [(1,13,10),(2,8,5),(3,24,27),(4,25,18),(6,12,17),(7,21,22),(9,20,15),(11,23,19),(14,16,26)], [(1,18,21),(2,16,19),(3,20,17),(4,22,13),(5,14,23),(6,24,15),(7,10,25),(8,26,11),(9,12,27)], [(1,2,3),(4,5,6,7,8,9),(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)]])
G:=TransitiveGroup(27,60);
C3×C32⋊C6 is a maximal subgroup of
He3⋊5D6 C3.C3≀S3 C32⋊C9⋊C6 C3.3C3≀S3 C34⋊C6 C9⋊He3⋊C2 (C3×He3)⋊C6 C9⋊S3⋊C32 He3.(C3×S3) C34⋊3S3 (C32×C9)⋊S3 C33⋊(C3×S3) He3.C3⋊2C6 He3⋊(C3×S3) 3+ 1+4⋊C2 3- 1+4⋊C2
C3×C32⋊C6 is a maximal quotient of
C34⋊C6 C34⋊S3 C34.C6 C34.S3 C9⋊He3⋊C2 C3≀S3⋊3C3 C3≀C3⋊C6 (C3×He3)⋊C6 He3.C3⋊C6 C9⋊S3⋊C32 He3.(C3×C6) He3.(C3×S3) C3≀C3.C6
Matrix representation of C3×C32⋊C6 ►in GL6(𝔽7)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(6,GF(7))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,2,0,0,0,2,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0] >;
C3×C32⋊C6 in GAP, Magma, Sage, TeX
C_3\times C_3^2\rtimes C_6
% in TeX
G:=Group("C3xC3^2:C6");
// GroupNames label
G:=SmallGroup(162,34);
// by ID
G=gap.SmallGroup(162,34);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-3,723,728,2704]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^3=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=c^-1>;
// generators/relations
Export