Copied to
clipboard

G = C3×C32⋊C6order 162 = 2·34

Direct product of C3 and C32⋊C6

direct product, metabelian, supersoluble, monomial

Aliases: C3×C32⋊C6, He34C6, C332C6, C333S3, C3⋊S3⋊C32, C32⋊(C3×C6), (C3×He3)⋊1C2, C321(C3×S3), C3.2(S3×C32), (C3×C3⋊S3)⋊C3, SmallGroup(162,34)

Series: Derived Chief Lower central Upper central

C1C32 — C3×C32⋊C6
C1C3C32C33C3×He3 — C3×C32⋊C6
C32 — C3×C32⋊C6
C1C3

Generators and relations for C3×C32⋊C6
 G = < a,b,c,d | a3=b3=c3=d6=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c-1, dcd-1=c-1 >

Subgroups: 200 in 58 conjugacy classes, 20 normal (11 characteristic)
C1, C2, C3, C3, S3, C6, C32, C32, C32, C3×S3, C3⋊S3, C3×C6, He3, He3, C33, C33, C32⋊C6, S3×C32, C3×C3⋊S3, C3×He3, C3×C32⋊C6
Quotients: C1, C2, C3, S3, C6, C32, C3×S3, C3×C6, C32⋊C6, S3×C32, C3×C32⋊C6

Character table of C3×C32⋊C6

 class 123A3B3C3D3E3F3G3H3I3J3K3L3M3N3O3P3Q3R3S3T6A6B6C6D6E6F6G6H
 size 191122233333366666666699999999
ρ1111111111111111111111111111111    trivial
ρ21-111111111111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ311ζ3ζ32ζ3ζ321ζ3ζ3ζ32ζ3211ζ32ζ31ζ3ζ32ζ32ζ311ζ3ζ32ζ321ζ3ζ3ζ321    linear of order 3
ρ41-1ζ3ζ32ζ3ζ321ζ321ζ31ζ3ζ32ζ3211ζ32ζ31ζ3ζ3ζ32ζ65ζ6ζ65ζ6-1ζ6-1ζ65    linear of order 6
ρ51-111111ζ3ζ32ζ32ζ3ζ3ζ321ζ321ζ3ζ32ζ31ζ3ζ32-1-1ζ6ζ6ζ6ζ65ζ65ζ65    linear of order 6
ρ61-1ζ3ζ32ζ3ζ321ζ3ζ3ζ32ζ3211ζ32ζ31ζ3ζ32ζ32ζ311ζ65ζ6ζ6-1ζ65ζ65ζ6-1    linear of order 6
ρ711ζ3ζ32ζ3ζ321ζ321ζ31ζ3ζ32ζ3211ζ32ζ31ζ3ζ3ζ32ζ3ζ32ζ3ζ321ζ321ζ3    linear of order 3
ρ811ζ32ζ3ζ32ζ31ζ31ζ321ζ32ζ3ζ311ζ3ζ321ζ32ζ32ζ3ζ32ζ3ζ32ζ31ζ31ζ32    linear of order 3
ρ91-1ζ32ζ3ζ32ζ31ζ32ζ32ζ3ζ311ζ3ζ321ζ32ζ3ζ3ζ3211ζ6ζ65ζ65-1ζ6ζ6ζ65-1    linear of order 6
ρ101-1ζ3ζ32ζ3ζ3211ζ321ζ3ζ32ζ3ζ32ζ32111ζ3ζ3ζ32ζ3ζ65ζ6-1ζ65ζ6-1ζ65ζ6    linear of order 6
ρ1111ζ32ζ3ζ32ζ31ζ32ζ32ζ3ζ311ζ3ζ321ζ32ζ3ζ3ζ3211ζ32ζ3ζ31ζ32ζ32ζ31    linear of order 3
ρ121111111ζ32ζ3ζ3ζ32ζ32ζ31ζ31ζ32ζ3ζ321ζ32ζ311ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 3
ρ131111111ζ3ζ32ζ32ζ3ζ3ζ321ζ321ζ3ζ32ζ31ζ3ζ3211ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 3
ρ1411ζ3ζ32ζ3ζ3211ζ321ζ3ζ32ζ3ζ32ζ32111ζ3ζ3ζ32ζ3ζ3ζ321ζ3ζ321ζ3ζ32    linear of order 3
ρ151-111111ζ32ζ3ζ3ζ32ζ32ζ31ζ31ζ32ζ3ζ321ζ32ζ3-1-1ζ65ζ65ζ65ζ6ζ6ζ6    linear of order 6
ρ161-1ζ32ζ3ζ32ζ31ζ31ζ321ζ32ζ3ζ311ζ3ζ321ζ32ζ32ζ3ζ6ζ65ζ6ζ65-1ζ65-1ζ6    linear of order 6
ρ1711ζ32ζ3ζ32ζ311ζ31ζ32ζ3ζ32ζ3ζ3111ζ32ζ32ζ3ζ32ζ32ζ31ζ32ζ31ζ32ζ3    linear of order 3
ρ181-1ζ32ζ3ζ32ζ311ζ31ζ32ζ3ζ32ζ3ζ3111ζ32ζ32ζ3ζ32ζ6ζ65-1ζ6ζ65-1ζ6ζ65    linear of order 6
ρ192022222222222-1-1-1-1-1-1-1-1-100000000    orthogonal lifted from S3
ρ2020-1--3-1+-3-1--3-1+-322-1+-32-1--3-1+-3-1--3ζ65ζ65-1-1-1ζ6ζ6ζ65ζ600000000    complex lifted from C3×S3
ρ2120-1--3-1+-3-1--3-1+-32-1--3-1--3-1+-3-1+-322ζ65ζ6-1ζ6ζ65ζ65ζ6-1-100000000    complex lifted from C3×S3
ρ222022222-1+-3-1--3-1--3-1+-3-1+-3-1--3-1ζ6-1ζ65ζ6ζ65-1ζ65ζ600000000    complex lifted from C3×S3
ρ232022222-1--3-1+-3-1+-3-1--3-1--3-1+-3-1ζ65-1ζ6ζ65ζ6-1ζ6ζ6500000000    complex lifted from C3×S3
ρ2420-1+-3-1--3-1+-3-1--32-1+-3-1+-3-1--3-1--322ζ6ζ65-1ζ65ζ6ζ6ζ65-1-100000000    complex lifted from C3×S3
ρ2520-1+-3-1--3-1+-3-1--32-1--32-1+-32-1+-3-1--3ζ6-1-1ζ6ζ65-1ζ65ζ65ζ600000000    complex lifted from C3×S3
ρ2620-1+-3-1--3-1+-3-1--322-1--32-1+-3-1--3-1+-3ζ6ζ6-1-1-1ζ65ζ65ζ6ζ6500000000    complex lifted from C3×S3
ρ2720-1--3-1+-3-1--3-1+-32-1+-32-1--32-1--3-1+-3ζ65-1-1ζ65ζ6-1ζ6ζ6ζ6500000000    complex lifted from C3×S3
ρ286066-3-3-300000000000000000000000    orthogonal lifted from C32⋊C6
ρ2960-3+3-3-3-3-33-3-3/23+3-3/2-300000000000000000000000    complex faithful
ρ3060-3-3-3-3+3-33+3-3/23-3-3/2-300000000000000000000000    complex faithful

Permutation representations of C3×C32⋊C6
On 18 points - transitive group 18T76
Generators in S18
(1 8 17)(2 9 18)(3 10 13)(4 11 14)(5 12 15)(6 7 16)
(1 8 17)(3 13 10)(4 14 11)(6 7 16)
(1 17 8)(2 9 18)(3 13 10)(4 11 14)(5 15 12)(6 7 16)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)

G:=sub<Sym(18)| (1,8,17)(2,9,18)(3,10,13)(4,11,14)(5,12,15)(6,7,16), (1,8,17)(3,13,10)(4,14,11)(6,7,16), (1,17,8)(2,9,18)(3,13,10)(4,11,14)(5,15,12)(6,7,16), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)>;

G:=Group( (1,8,17)(2,9,18)(3,10,13)(4,11,14)(5,12,15)(6,7,16), (1,8,17)(3,13,10)(4,14,11)(6,7,16), (1,17,8)(2,9,18)(3,13,10)(4,11,14)(5,15,12)(6,7,16), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18) );

G=PermutationGroup([[(1,8,17),(2,9,18),(3,10,13),(4,11,14),(5,12,15),(6,7,16)], [(1,8,17),(3,13,10),(4,14,11),(6,7,16)], [(1,17,8),(2,9,18),(3,13,10),(4,11,14),(5,15,12),(6,7,16)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)]])

G:=TransitiveGroup(18,76);

On 18 points - transitive group 18T78
Generators in S18
(1 5 4)(2 6 3)(7 11 9)(8 12 10)(13 15 17)(14 16 18)
(1 11 15)(2 18 8)(3 16 10)(4 7 13)(5 9 17)(6 14 12)
(1 4 5)(2 6 3)(7 9 11)(8 12 10)(13 17 15)(14 16 18)
(1 2)(3 4)(5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)

G:=sub<Sym(18)| (1,5,4)(2,6,3)(7,11,9)(8,12,10)(13,15,17)(14,16,18), (1,11,15)(2,18,8)(3,16,10)(4,7,13)(5,9,17)(6,14,12), (1,4,5)(2,6,3)(7,9,11)(8,12,10)(13,17,15)(14,16,18), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)>;

G:=Group( (1,5,4)(2,6,3)(7,11,9)(8,12,10)(13,15,17)(14,16,18), (1,11,15)(2,18,8)(3,16,10)(4,7,13)(5,9,17)(6,14,12), (1,4,5)(2,6,3)(7,9,11)(8,12,10)(13,17,15)(14,16,18), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18) );

G=PermutationGroup([[(1,5,4),(2,6,3),(7,11,9),(8,12,10),(13,15,17),(14,16,18)], [(1,11,15),(2,18,8),(3,16,10),(4,7,13),(5,9,17),(6,14,12)], [(1,4,5),(2,6,3),(7,9,11),(8,12,10),(13,17,15),(14,16,18)], [(1,2),(3,4),(5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)]])

G:=TransitiveGroup(18,78);

On 18 points - transitive group 18T81
Generators in S18
(1 14 7)(2 15 8)(3 16 9)(4 17 10)(5 18 11)(6 13 12)
(1 11 3)(2 17 13)(4 6 8)(5 16 14)(7 18 9)(10 12 15)
(1 7 14)(2 15 8)(3 9 16)(4 17 10)(5 11 18)(6 13 12)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)

G:=sub<Sym(18)| (1,14,7)(2,15,8)(3,16,9)(4,17,10)(5,18,11)(6,13,12), (1,11,3)(2,17,13)(4,6,8)(5,16,14)(7,18,9)(10,12,15), (1,7,14)(2,15,8)(3,9,16)(4,17,10)(5,11,18)(6,13,12), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)>;

G:=Group( (1,14,7)(2,15,8)(3,16,9)(4,17,10)(5,18,11)(6,13,12), (1,11,3)(2,17,13)(4,6,8)(5,16,14)(7,18,9)(10,12,15), (1,7,14)(2,15,8)(3,9,16)(4,17,10)(5,11,18)(6,13,12), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18) );

G=PermutationGroup([[(1,14,7),(2,15,8),(3,16,9),(4,17,10),(5,18,11),(6,13,12)], [(1,11,3),(2,17,13),(4,6,8),(5,16,14),(7,18,9),(10,12,15)], [(1,7,14),(2,15,8),(3,9,16),(4,17,10),(5,11,18),(6,13,12)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)]])

G:=TransitiveGroup(18,81);

On 27 points - transitive group 27T48
Generators in S27
(1 4 9)(2 5 7)(3 6 8)(10 22 21)(11 23 16)(12 24 17)(13 25 18)(14 26 19)(15 27 20)
(1 27 24)(2 22 25)(4 20 17)(5 21 18)(7 10 13)(9 15 12)
(1 27 24)(2 25 22)(3 23 26)(4 20 17)(5 18 21)(6 16 19)(7 13 10)(8 11 14)(9 15 12)
(1 2 3)(4 5 6)(7 8 9)(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)

G:=sub<Sym(27)| (1,4,9)(2,5,7)(3,6,8)(10,22,21)(11,23,16)(12,24,17)(13,25,18)(14,26,19)(15,27,20), (1,27,24)(2,22,25)(4,20,17)(5,21,18)(7,10,13)(9,15,12), (1,27,24)(2,25,22)(3,23,26)(4,20,17)(5,18,21)(6,16,19)(7,13,10)(8,11,14)(9,15,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27)>;

G:=Group( (1,4,9)(2,5,7)(3,6,8)(10,22,21)(11,23,16)(12,24,17)(13,25,18)(14,26,19)(15,27,20), (1,27,24)(2,22,25)(4,20,17)(5,21,18)(7,10,13)(9,15,12), (1,27,24)(2,25,22)(3,23,26)(4,20,17)(5,18,21)(6,16,19)(7,13,10)(8,11,14)(9,15,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27) );

G=PermutationGroup([[(1,4,9),(2,5,7),(3,6,8),(10,22,21),(11,23,16),(12,24,17),(13,25,18),(14,26,19),(15,27,20)], [(1,27,24),(2,22,25),(4,20,17),(5,21,18),(7,10,13),(9,15,12)], [(1,27,24),(2,25,22),(3,23,26),(4,20,17),(5,18,21),(6,16,19),(7,13,10),(8,11,14),(9,15,12)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)]])

G:=TransitiveGroup(27,48);

On 27 points - transitive group 27T60
Generators in S27
(1 3 2)(4 15 26)(5 10 27)(6 11 22)(7 12 23)(8 13 24)(9 14 25)(16 18 20)(17 19 21)
(1 13 10)(2 8 5)(3 24 27)(4 25 18)(6 12 17)(7 21 22)(9 20 15)(11 23 19)(14 16 26)
(1 18 21)(2 16 19)(3 20 17)(4 22 13)(5 14 23)(6 24 15)(7 10 25)(8 26 11)(9 12 27)
(1 2 3)(4 5 6 7 8 9)(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)

G:=sub<Sym(27)| (1,3,2)(4,15,26)(5,10,27)(6,11,22)(7,12,23)(8,13,24)(9,14,25)(16,18,20)(17,19,21), (1,13,10)(2,8,5)(3,24,27)(4,25,18)(6,12,17)(7,21,22)(9,20,15)(11,23,19)(14,16,26), (1,18,21)(2,16,19)(3,20,17)(4,22,13)(5,14,23)(6,24,15)(7,10,25)(8,26,11)(9,12,27), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27)>;

G:=Group( (1,3,2)(4,15,26)(5,10,27)(6,11,22)(7,12,23)(8,13,24)(9,14,25)(16,18,20)(17,19,21), (1,13,10)(2,8,5)(3,24,27)(4,25,18)(6,12,17)(7,21,22)(9,20,15)(11,23,19)(14,16,26), (1,18,21)(2,16,19)(3,20,17)(4,22,13)(5,14,23)(6,24,15)(7,10,25)(8,26,11)(9,12,27), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27) );

G=PermutationGroup([[(1,3,2),(4,15,26),(5,10,27),(6,11,22),(7,12,23),(8,13,24),(9,14,25),(16,18,20),(17,19,21)], [(1,13,10),(2,8,5),(3,24,27),(4,25,18),(6,12,17),(7,21,22),(9,20,15),(11,23,19),(14,16,26)], [(1,18,21),(2,16,19),(3,20,17),(4,22,13),(5,14,23),(6,24,15),(7,10,25),(8,26,11),(9,12,27)], [(1,2,3),(4,5,6,7,8,9),(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)]])

G:=TransitiveGroup(27,60);

C3×C32⋊C6 is a maximal subgroup of
He35D6  C3.C3≀S3  C32⋊C9⋊C6  C3.3C3≀S3  C34⋊C6  C9⋊He3⋊C2  (C3×He3)⋊C6  C9⋊S3⋊C32  He3.(C3×S3)  C343S3  (C32×C9)⋊S3  C33⋊(C3×S3)  He3.C32C6  He3⋊(C3×S3)  3+ 1+4⋊C2  3- 1+4⋊C2
C3×C32⋊C6 is a maximal quotient of
C34⋊C6  C34⋊S3  C34.C6  C34.S3  C9⋊He3⋊C2  C3≀S33C3  C3≀C3⋊C6  (C3×He3)⋊C6  He3.C3⋊C6  C9⋊S3⋊C32  He3.(C3×C6)  He3.(C3×S3)  C3≀C3.C6

Matrix representation of C3×C32⋊C6 in GL6(𝔽7)

400000
040000
004000
000400
000040
000004
,
400000
020000
001000
000200
000040
000001
,
200000
020000
002000
000400
000040
000004
,
000020
000002
000200
020000
002000
200000

G:=sub<GL(6,GF(7))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,2,0,0,0,2,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0] >;

C3×C32⋊C6 in GAP, Magma, Sage, TeX

C_3\times C_3^2\rtimes C_6
% in TeX

G:=Group("C3xC3^2:C6");
// GroupNames label

G:=SmallGroup(162,34);
// by ID

G=gap.SmallGroup(162,34);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-3,723,728,2704]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=c^-1>;
// generators/relations

Export

Character table of C3×C32⋊C6 in TeX

׿
×
𝔽